Server Implementations
of HTTP/2 Priority

Kazu Yamamoto
@azu_yamanot o

' I 11J INNOVATION
INSTITUTE

History

= h2o (in C)
= Kazuho Oku
= Array of Queue (external)
= Enqueue O(1), dequeue O(1), delete O(1)
= Deficit and delete information is managed outside

= nghttp2 (in C)
= Tatsuhiro Tsujikawa
= Binary Heap (external)
= Enqueue O(log N), dequeue O(log N), delete O(log N)
= Deficit and delete information is managed outside

= Warp (in Haskell)
= Kazu Yamamoto
= Random Skew Heap
= Enqueue O(log N), dequeue O(log N), delete O(N log N)
= No deficit and delete information

= Now using PSQ (Priority Search Queue)
= Enqueue O(log N), dequeue O(log N), delete O(log N)

Today'’s topic

= Flat priority queue only
= Nested priority queue can be build over flat ones

Background

= Using weight as priority of max heap
" it’s not fair

= Example
= A for weight 10
= B for weight 5
= C for weight 1

= Result sequence
= A(10), A(9), A(8), A(7), A(6), A(5), B(5), A(4), B(4), ...

Random Skew Heap

= Selecting a frame based on a random value
m=]1-10for A
m11-15forB
m 16 for C

= To implement O(log N) operations, skew heap is used

merge

Skew heap & <
priority = prirority 5‘\ random = total weight
merge

Random skew heap

Random Skew Heap

" Pros
® No additional information

= Cons
= |t is hard for me to proof fairness
= |t is difficult to write test cases
= Pseudo random generators are slow for this purpose
= delete is O(N log N)

Welighted Fair Queueing

= |nverted weight with min heap
= New: deficit = min_deficit_in_heap + constant / weight
= Exist: deficit = last_deficit + constant / weight

= Deficit examples (constant is 65536)
= A for weight 10, deficit = 6553
= B for weight 5, deficit = 13107
= C for weight 1, deficit = 65536

= Result sequence
= A (6553)
= A (13106)
= B (13107)
= A (19659)
= A (26212)
" B (26214)

Welighted Fair Queueing

" Pros
= Fairness is proved already though | don’t understand
= |t's easy to write test cases
= All operations could be O(log N)

= Cons
= Need to memorize deficit for each entry
= Deficit could be overflowed (but it is unlikely)

Min Heap

= Binary heap
= Many people knows
= Perfect balance in arrays
= O(log N) for enqueue, dequeue and delete
® The array must be glow if the concurrency is increased

= Okasaki heap
" Immutable data
= O(log N) for enqueue and dequeue
= O(N) for delete

= Priority search queue
= Immutable data
= Blend of search tree and heap
= O(log N) for enqueue, dequeue and delete

Array of Queue

= Emulating heap with an array of queues
= Behavior is a little bit different

= Deficit and offset
= Exist: deficit = (last_deficit + constant / weight) % constant2
m Exist: offset = (last_deficit + constant / weight) / constant2

= An element is queued according to its offset
= "Find first bit set" in O(1) can be used to find a non empty queue

T

0 7
W

- -
-

10

Array of Queue

" Pros
" |t's easy to write test cases
= All operations could be O(1)
= Deficit is not overflowed

= Cons
" Implementation is a little bit complicated

11

Comparison

= 13 implementations
= Random Skew Heap <- old Warp
= Okasaki Heap (internal)
® Okasaki Heap (external)
= Priority Search Queue (internal) <- new Warp
= Priority Search Queue (external)
= Binary Heap (internal)
= Binary Heap (external) <- nghttp2
= Binary Heap STM(Software Transactional Memory) (internal)
= Binary Heap STM (external)
= Array of Queue (internal)
= Array of Queue (external) <- h20
= Array of Queue STM (internal)
= Array of Queue STM (external)

" Information managed internally or externally
= Deficit
= Deletion hints

= "Internal" means abstract data type 12

Benchmark on enqueue & dequeue
= Repeating 10000 enqueue & dequeue with 100 streams

enqueue & dequeue

[Bula)Xa WIS enanp jo Aely

[ELIBIU| W 1S anang jo Aelny

(BUI21X® ananp) jo Aely

[ewIBU| Beneng) Jo Aelly

|Bulaixse W 1S desy Aieulg

lewsjul LS desH Aseulg

|eusexa deay Aleulg

|eulaiul deay Aleulg

|BUl@)xe anany yaieag Auolid

|eulaul 8nanp yoleas Aolid

|ewseyxa deaH [Heseyq

leusaiu) desi [HESENO

|ewlaxe deaH mayg wopuey

(=
w

Q =] =] o= o o
w =+ o o~ —

puosasl|iw

13

Benchmark of delete

= Deleting 100 streams

delete

14

[BUISIXE W LS ananp) 1o Aeuy

N/A

[BLIGI| W 1S ananp) Jo Aeliy

N/A

|ewlaie anang jo Aely

[euJau] ananp Jo Aeliy
[eulaixe 1S deaH Aleulg
|eulaul LS deaH Aeulg
|euexe deay Aeuig

|eulaju| deay fleuig

|Eulaa anang yaieas fuolid
[eulagu] anany yoleas Auolid
|eulaxe deay 1yeseyO
[eulai| deal IeseN0

deay meyg wopuey

2500

2000

1500
1000
500

puO28s0IIW

Conclusion

= Binary Heap would be the first choice

for most programming language
= nghttp2

= Array of Queue would be the next choice

If you are not satisfied with the performance
= h20

= Priority Search Queue is recommended

for highly concurrent programming language
= Warp

15

