Priority Search Queue

2012.12.11
Kazu Yamamoto

What is PSQ?

= PSQ = Priority Search Queue
="PSQkp

= Search = Binary Search Tree with key
= Priority as value (key - priority pair)
® insert
mk->p->PSQkp->PSQkp
® O(log n) in the worst case
= Jookup
=k ->PSQ k p ->Maybe p
® O(log n) in the worst case

= Priority Queue = Heap with priority
= extractMin
= PSQ k p -> Maybe (k, p, PSQ k p)
®= O(log n) in the worst case
= atMost
®=p->PSQ Kk p -> [Binding k p]
®= O(m log n) in the worst case where m is # of deleted items
= updatePriority
"(p->p)->k->PSQkp->PSQkp
®= O(log n) in the worst case

Example

® A variant of loser tree or pennant

W <= max key

__= priority

not heap

keys must be unique
keys are stored in ascending order

Applications of PSQ

= Timeout manager of Glasgow Haskell Compiler

= Set timeout
= insert with a unique key and a time as priority

= Operation finished before timeout
= delete with a unique key

= Regular timeout
= atMost to obtain expired entries

= Dijkstra’s algorithm
= Aka SPF (Shortest Path First)
= Single source shortest path problem

Example of Dijkstra’s algorithm

updateAd] S extract A

updateAdj A

Dijkstra’s algorithm

= Pseudo code

S< ¢

Q < Vertces(G) with priority of oo

updatePriority startPoint O

while (Q # @) {
u < extractMin(Q)
S<~SUu
foreach v € Adj(u) {

updatePriority v weight(u,Vv)

}

}

= Cost
|Vertex| * extractMin + |Edge| * updatePriority

Comparing other implementations

= Cost (again)
=V * O of extractMin + E * O of updatePriority

= Array
= O(V2 + E) = O(V?)
= extractMin: O(V)
= ypdatePriority: O(1)

= Binary heap with two arrays
= One array to index with keys
= O((V +E)log V)
® extractMin: O(log V)
= updatePriority: O(log V)

= PSQ
= Purely functional (non-destructive)
=" O((V+E)log V)
® extractMin: O(log V)
= updatePriority: O(log V)

Construction and Destruction

= The play operator: +

' . | " |

k1,p1 k2,p2
m2 m2
S—— S—
p1 =p2 |€ p1 $n22 p1>p2
k2 p2 ::\;- k1,p1
m1 m1

oYX Ve

iInsert (0)

singleton

: K,
kp &> ¢ E>

Insert (1)

k > k1
k1,p1 K,p
k1 k
+

10

Insert (2)

11

