
1

High Performance Web Server
in Haskell

2011.7.12

IIJ Innovation Institute Inc.
Kazu Yamamoto

2

My goal

Modular Network Programming
on

Highly Concurrent Environment

3

Today’s talk

Will not talk about
Modular

It’s difficult to understand if you don’t know Haskell

Will talk about
Highly Concurrent

4

Timeline

5

Haskellers Meeting 2010 Spring
 Simon Peyton Jones came to Tokyo
 16 Apr 2010

 I made a presentation
 Experience on implementing a Web server in Haskell
 http://www.mew.org/~kazu/material/2010-mighttpd-en.pdf

 The following slides are from the presentation

6

Three Goals of Mighttpd

7

Two Ideas for Performance

8

HTTP and thread programming

9

User Thread is Real Thread

10

The barrier of 1,024 connections

11

Prefork library

12

Mighttpd implementation

13

Benchmark Environment

14

Benchmark Result

15

Profiling

16

One Hope

17

Future architecture

18

Between Mighttpd 1 and 2
 Parallel Haskell Project
 Budget from MS Research
 Steering by well-typed
 IIJ-II was chosen as a partner
 well-typed and IIJ-II have skype meeting every other week

 GHC 7 (aka GHC 6.14)
 New IO manager based on epoll() and kqueue()

 Web application framework boom
 Snap
 HappStack
 Yesod
 WAI (Web Application Interface)

19

Testing GHC 7
 New IO manager of GHC 7.0.1 was unstable
 I found 6 bugs
 GHC HQ and well-type fixed them

 Bugs
 kqueue socket disappears on Mac if demonized
 http://hackage.haskell.org/trac/ghc/ticket/4449

 Cannot wait signals
 http://hackage.haskell.org/trac/ghc/ticket/4504

 Event logs are strange
 http://hackage.haskell.org/trac/ghc/ticket/4512

 IO manager would be dead-locked
 http://hackage.haskell.org/trac/ghc/ticket/4514

 Behavior of getContents is strange
 http://hackage.haskell.org/trac/ghc/ticket/4895

 hsc2hs cannot work on Mac
 http://hackage.haskell.org/trac/ghc/ticket/4852

 New IO manager of GHC 7.0.2 is now stable

20

Web Application Interface
 API for Yesod and HappStack

21

Adopting Web Application Interface

22

Warp performance

 http://www.yesodweb.com/blog/2011/03/preliminary-warp-cross-language-benchmarks

 Warp
 No HTTP logic
 Just parses HTTP req and composes HTTP resp
 Does not handle Last-Modified:
 Does not touch a file

23

httperf Ping-Pong benchmark

 httperf --hog --num-conns 1000 --num-calls 1000
 --burst-length 20 --rate 1000 --server localhost
 --port 3000 --uri /

24

Warp and mighttpd 2
 Benchmarking in my environment
 Host
 Intel(R) Xeon(R) CPU L5520 @ 2.27GHz x 8, 4 cores for each (32 cores)
 24G memory
 Ubuntu 10.04, KVM 0.12.3

 Guest
 4 cores
 1G memory
 Ubuntu 10.10

 Warp (memory only)
 23928.1 req/s, 1 core, w/o logging

 Mighttpd 2 (with static files)
 4229.7 req/s, 1 core, w/o logging

25

Show-stoppers
 Tree based dictionary for Content-Type: O(log n)
 → Array-based immutable hash O(1)

 Date.Time
 To parse and format HTTP Date (e.g. Last-Modified:)
 Too slow. Consuming 30-40% of CPU time
 Many division on type transforms
 Inefficient list programming

 → Creating simple ByteString based library

 System.Posix.Files.getFileStatus
 Getting size and modification time of files (stat())

 → Caching in memory
 Removing all cached information every 10 seconds

 System calls
 Context switches are evil for user threads

26

sendfile
 The sendfile library
 Unnecessary seek() and stat()

 Creating simple-sendfile library
 Calling sendfile() only
 No standard exits
 Linux
 FreeBSD
 Mac
 Fallback

 System calls in the current code
 HTTP requests
 recv()

 HTTP response -- header
 writev()

 HTTP response -- body
 open()
 sendfile() -- Note that stat() information is cached
 close()
 File descriptor could be cached but the logic would be very complex

27

Benchmark on a single core
 nginx
 22713.3 req/s, 1 core, w/o logging

 Warp (memory only)
 23928.1 req/s, 1 core, w/o logging

 mighttpd2
 21601.6 req/s, 1 core, w/o logging
 4229.7 req/s, 1 core, w/o logging, not tuned

28

Scaling on multi cores
 New IO manager is a single kernel thread
 +RTS -Nx does not help to scale on multi cores
 +RTS -Nx is not friendly to forkProcess
 Introducing the prefork technique again

 nginx with 3 workers
 30471.2 req/s, 3 cores, w/o logging
 22713.3 req/s, 1 core, w/o logging

 mighttpd2 with 3 prefork processes
 61309.0 req/s, 3 cores, w/o logging
 21601.6 req/s, 1 core, w/o logging

29

Logging is the biggest show-stoppers

 128.141.242.20 - - [08/Jul/2011:17:05:14 +0900]
 "GET /favicon.ico" 404 11

 Data.Time again
 → Caching formatted string
 Calling gettimeofday() every second
 Formatting with Data.Time due to time zone

 getnameinfo() in C
 → Simply implement in Haskell

30

Various logging schemes
 Serialization
 Haskell channel (atomic queue)
 Buffering in memory

 Appending a file
 Writing a file
 truncate() and mmap()
 Blocking write()
 Non-blocking write()
 File IO dedicated process with shared memory

 Implemented many combinations...

 Appeared that the simplest one is best
 Non-blocking write() with Handle on each process
 Handle is automatically locked by MVar.
 Multi line buffering with BlockBuffering
 hPut flushes the buffer before buffering if there is not enough space
 So, hPut never split a line

31

Benchmark with logging
 nginx with 3 workers
 25035.2 req/s, 3 cores, w/ logging
 30471.2 req/s, 3 cores, w/o logging

 mighttpd2 with 3 prefork processes
 31101.5 req/s, 3 cores, w/ logging
 61309.0 req/s, 3 cores, w/o logging

 Room for improvement in logging?

32

Conclusions so far
 Mighttpd 2 is fast enough
 To one httperf Ping-Pong benchmark in one env,
 Mighttpd 2 is faster than nginx

 Haskell user thread is good for C10K
 System calls are evils
 Blocking IO is also evil

 Room for improvement in logging?

 Todo
 Reverse proxy
 Tackling multi-thread IO manager?
 It would be hard. Worth trying?

 Enhancing httperf
 epoll() / kqueue()
 IPv6

