High Performance Web Server
iIn Haskell

2011.7.12

[1J Innovation Institute Inc.
Kazu Yamamoto

My goal

Modular Network Programming
on
Highly Concurrent Environment

Today’s talk

Will not talk about
Modular

It's difficult to understand if you don’t know Haskell

Will talk about
Highly Concurrent

Timeline

20009 fall

2010 win

Haskellers Meeting in Tokyo 2010 spr

2010 sum

Parallel Haskell Project 2010 fall

2011 win
2011 spr

2011 sum

mighttpd ver 1 / GHC 6

i[Testing GHC 7

mighttpd ver 2 / GHC 7

Haskellers Meeting 2010 Spring

= Simon Peyton Jones came to Tokyo
=16 Apr 2010

= | made a presentation

= Experience on implementing a Web server in Haskell
= http://www.mew.org/~kazu/material/2010-mighttpd-en.pdf

= The following slides are from the presentation

Three Goals of Mighttpd

_ _ Mighttpd should provide enough
Functionality functionality to replace Apache on my
domain "Mew.org".

Modularity Mlgh_tde sho_uld be able to be
modified easily for our research.
Mighttpd should exceed Apache
Performance on static contents.

2 -

LIGHTTPD

Two ldeas for Performance

ByteString User thread
Traditional String in Haskell is very slow. Kernel thread is heavy.
-3 @ A 4
|l =i P> st —1 ' 4'3 43 v
\/ e e _
ByteString is faster like char[] in C. User thread is light.

» 94

Ex [-@ ° 0

HTTP and thread programming

Network Message Stream
protocol oriented oriented
DNS SMTP, HTTP

Network Event
programming | driven

select,kqueue,epoll fork,pthread create

Threading

Event driven programming for stream
& oriented protocol is messy.

Thread programming for stream oriented
protocol is concise.

g | want to implement HTTP on threading.
Simplicity is a good thing.

User Thread is Real Thread

GHC has an IO manager as a user thread.
It is event-driven.

It takes care of buffering and wakes up
blocked user threads.

So, using user threads is really thread
programming.

€66

hGet 3) ?
¢

9 |
}
Handle L,K\ | Buffering

Socket IO manager Event driven

User thread

The barrier of 1,024 connections

The I0 manager is implemented
7 using select.

30 select cannot handle over
2 1,024 files/connections.

If GHC 6.12 receives over 1,024

connections, resource exhaustion
exception happens.

1024 @

(1)
(select

0@
@00eQ
00@
@000

10

Prefork library

N

Prefork is a technique to share a listening port
among forked processes.

-

—_— |

I BIEEEXRE
> 0 > 90 ?
? 2
(select) C select))l (

Kernel

80

Now, GHC 6.12 can accept any number

/ of connections!

11

Mighttpd implementation

Package name

mighttpd | File base | | KVS base | Notreleased

HTTP, session,

webserver redirect, CGI
c10k prefork
Modularity "webserver" is designed to handle
any storage systems.
Functionality "mighttpd" works on Mew.org now!
12

Benchmark Environment

JMeter
- = \
Y w
Controller ‘% LIGHTTPD
X

13

Benchmark Result

Response time in millisecond (median)

12000

8000 -

6000

4000

2000

10000 ~

- ™= Apache prefork

g ETEE
f

rker

uenreo - lighttpd

i 2 ——
o 1 | 1
1000 2000 3000 4000 2000 6000 2000

Number of connections

14

Profiling

File 10 is dominant.
Why, Mighttpd slower than Apache?

$ ab -n 2000 -c 200 -k http://localhost/

COST CENTRE MODULE $time %alloc

fileGet File 73.3 37.4
mighty File 20.0 57.9
fileInfo File 6.7 2.9
fileMapper File 0.0 1.1

Ah, it's overhead of select!
@ Any hopes?

15

One Hope

Tibbe and Bos are developing "event"
library for kqueue and epoll.

Now we can use it for event-driven network
programming.

They are planning to integrate it into the 10
manager in GHC 6.14.

GHC 6.12 GHC 6.12+event GHC 6.14

-
\
\

?

O ’ | r Q kqueue | r ’ ’ ’
2 0 2 90
'
| (select) ‘ L (select) | L (kgqueue)

16

Future architecture

_ Since there is only one 10 manager,
& GHC 6.14 would not balance on multi-core.

9 But the prefork technique could be used
to balance on multi-core.

0 ?
9 ’

000

kgqueue kgueue

kqueue

o |[o)
o || o 9
) |1 C)

(9@

?
?
) J

MNo9O@

Lo > | §

17

Between Mighttpd 1 and 2

= Parallel Haskell Project
= Budget from MS Research
= Steering by well-typed
= |1J-1l was chosen as a partner
= well-typed and I1J-1l have skype meeting every other week

= GHC 7 (aka GHC 6.14)

= New IO manager based on epol | () and kqueue()

= Web application framework boom
= Snap
= HappStack

= Yesod
= WAI (Web Application Interface)

18

Testing GHC 7

= New IO manager of GHC 7.0.1 was unstable
= | found 6 bugs
= GHC HQ and well-type fixed them

" Bugs
= kqueue socket disappears on Mac if demonized
= http://hackage.haskell.org/trac/ghcl/ticket/4449

= Cannot wait signals
® http://hackage.haskell.org/trac/ghc/ticket/4504

= Event logs are strange
= http://hackage.haskell.org/trac/ghc/ticket/4512

= |O manager would be dead-locked
= http://hackage.haskell.org/trac/ghc/ticket/4514

= Behavior of getContents is strange
® http://hackage.haskell.org/trac/ghc/ticket/4895

® hsc2hs cannot work on Mac
= http://hackage.haskell.org/trac/ghc/ticket/4852

= New IO manager of GHC 7.0.2 is now stable

19

Web Application Interface

= API for Yesod and HappStack

Handler = Application -> 10 () WAI Application = Request
-> |teratee ByteString IO Response

) Handler. Routing
Lwal-handler-devel J DevelServer Haml
: Yesod amiet
wai-handler-devel toWaiApp Cassius
Julius
yesod

L warp-static J

Handler.Warp

App.Static —»| File

L mighttpd2 J warp
socket wai-app-static
Handler.FastCGI

: . wai-handler-fastcgi
App.Classic » CGI
Webserver Handler.CGI wai-app-file-cgi \
wai-extra

Adopting Web Application Interface

Mighttpd

webserver

cl0k / GHC 6

config
logging

file handling
HTTP logic

HTTP reqg/resp

socket

Mighttpd 2

wai-app-file-cgi

warp + sendfile

GHC 7

21

Warp performance

35,272 35,811

18,654

3,237 3,416 3,417 4.660

http://www.yesodweb.com/blog/2011/03/preliminary-warp-cross-language-benchmarks

= Warp
= No HTTP logic
= Just parses HTTP req and composes HTTP resp
= Does not handle Last-Modified:
= Does not touch a file

22

httperf Ping-Pong benchmark

& num-calls -
burst-length

E |
] =
g 14
3 D>
%) =
=~ D>
o]
P
[>
>
P
= >
= >
53
S >
o >
P
>
>

I
httperf --hog --numconns 1000 --numcalls 1000

--burst-length 20 --rate 1000 --server | ocal host
--port 3000 --uri /

23

Warp and mighttpd 2

= Benchmarking in my environment

® Host
= Intel(R) Xeon(R) CPU L5520 @ 2.27GHz x 8, 4 cores for each (32 cores)
® 24G memory
= Ubuntu 10.04, KVM 0.12.3

® Guest
® 4 cores
= 1G memory
= Ubuntu 10.10

= Warp (memory only)
= 23928.1 req/s, 1 core, w/o logging

= Mighttpd 2 (with static files)
m 4229.7 reqg/s, 1 core, w/o logging

24

Show-stoppers

= Tree based dictionary for Content-Type: O(log n)
— Array-based immutable hash O(1)

= Date.Time
= To parse and format HTTP Date (e.g. Last-Modified:)
= Too slow. Consuming 30-40% of CPU time
= Many division on type transforms
= |nefficient list programming

— Creating simple ByteString based library

= System.Posix.Files.getFileStatus
= Getting size and modification time of files (stat())

— Caching in memory
= Removing all cached information every 10 seconds

= System calls
® Context switches are evil for user threads

25

sendfile

= The sendfile library
= Unnecessary seek() and stat()

= Creating simple-sendfile library
= Calling sendfile() only
= No standard exits
= Linux
= FreeBSD

® Mac
® Fallback

= System calls in the current code
= HTTP requests

= recv()

= HTTP response -- header
= writev()

= HTTP response -- body
= open()
= sendfile() -- Note that stat() information is cached
= close()
= File descriptor could be cached but the logic would be very complex

26

Benchmark on a single core

= nginx |
m 22713.3 req/s, 1 core, w/o logging

= Warp (memory only)
m 23928.1 reqg/s, 1 core, w/o logging

= mighttpd?2
= 21601.6 req/s, 1 core, w/o logging
m 4229.7 reqg/s, 1 core, w/o logging, not tuned

27

Scaling on multi cores

= New IO manager is a single kernel thread
= +RTS -Nx does not help to scale on multi cores
= +RTS -NXx is not friendly to forkProcess
® Introducing the prefork technique again

" nginx with 3 workers
= 30471.2 req/s, 3 cores, w/o logging
m 22713.3 reqg/s, 1 core, w/o logging

= mighttpd2 with 3 prefork processes
= 61309.0 reqg/s, 3 cores, w/o logging
= 21601.6 reqg/s, 1 core, w/o logging

28

Logging Is the biggest show-stoppers

128.141.242.20 - - [08/Jul/2011:17:05:14 +0900]
"GET /favicon.ico" 404 11

= Data.Time again
— Caching formatted string
Calling gettimeofday() every second
Formatting with Data.Time due to time zone

= getnameinfo() in C
— Simply implement in Haskell

29

Various logging schemes

® Serialization

= Haskell channel (atomic queue)
= Buffering in memory

= Appending a file
= Writing a file
= truncate() and mmap()
= Blocking write()
= Non-blocking write()

= File IO dedicated process with shared memory
= Implemented many combinations...

= Appeared that the simplest one is best
® Non-blocking write() with Handle on each process
= Handle is automatically locked by MVarr.
= Multi line buffering with BlockBuffering

= hPut flushes the buffer before buffering if there is not enough space
= So, hPut never split a line

30

Benchmark with logging

" nginx with 3 workers
= 25035.2 req/s, 3 cores, w/ logging
= 30471.2 reqg/s, 3 cores, w/o logging

= mighttpd2 with 3 prefork processes
= 31101.5 reqg/s, 3 cores, w/ logging
= 61309.0 reqg/s, 3 cores, w/o logging

= Room for improvement in logging?

31

Conclusions so far

= Mighttpd 2 is fast enough
= To one httperf Ping-Pong benchmark in one env,
Mighttpd 2 is faster than nginx

= Haskell user thread is good for C10K
= System calls are evils
= Blocking 10 is also evil

= Room for improvement in logging?
" Todo

= Reverse proxy

= Tackling multi-thread 10 manager?
= |t would be hard. Worth trying?

= Enhancing httperf
= epoll() / kqueue()
" |Pv6

32

