
Copyright c

1996 IEEE. See full copyright notice at Table of Contents.

An Integration of PGP and MIME

Kazuhiko YAMAMOTO
Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma City 630-01 JAPAN
Email: kazu@is.aist-nara.ac.jp

Abstract
Internet text mail has been developing to satisfy vari-

ous user requests, such as transporting non-textual objects
and privacy enhancements. While MIME redefined the mail
body format to support non-textual objects and multipart
structure, PGP provides encryption and digital signature
features for text mail. MIME, however, does not provide
privacy services whereas non-textual objects cannot be ex-
changed with PGP. It is of recent interest to integrate PGP
and MIME so that users can make use of these two ser-
vices at the same time. This paper describes an integration
of PGP and MIME. Our scheme embeds PGP objects into
MIME and maintains backward compatibility with PGP.
It is possible to encrypt, sign, and sign-then-encrypt non-
textual objects, singleparts in a multipart, an entire mul-
tipart, etc. We also explain our viewing and composing
mechanisms that allow users to handle PGP/MIME mes-
sages intuitively without format restrictions.

1 Introduction
Since RFC822 [1] specified the format of Internet text

mail in 1982, it has widely spread and is now a represen-
tative of Internet services. Due to poor computing power
and unstable network systems at that time, RFC822 mes-
sages limited their mail body to text. As the computing
power and capacities improved, the user’s desire to trans-
port non-textual objects such as pictures, video, and audio
increased. Many people from various countries extended
RFC822 messages to contain non-English characters from
their native language. To satisfy the diversity of user re-
quests and to bridge the localized RFC822 messages, Mul-
tipurpose Internet Mail Extensions(MIME) was proposed
in 1992 [2].

Since the Internet has been changing from research ori-
ented to commercial and from organizational to individ-
ual, privacy for electronic mail has become a significant
problem. Pretty Good Privacy(PGP) [3] was released in
1991 with the hope of providing confidentiality, message
integrity, user authentication and non-repudiation for elec-
tronic mail. PGP is now supported not only by users in the
US but in other countries as well.

It is natural that users would want to use the rich fea-
tures of MIME and the privacy services of PGP at the same
time. Unfortunately, MIME and PGP have taken separate
evolution paths. MIME itself does not provide privacy en-
hancement services whereas non-textual objects cannot be
exchanged with PGP. So, it is of recent interest to integrate
PGP and MIME. In this paper, we propose an integration

of PGP and MIME, embedding PGP objects within MIME.
We call our integration scheme “PGP/MIME”, while we
use the term “PGP/RFC822” to indicate an RFC822 mes-
sage containing one PGP object. It is possible to encrypt,
sign, and sign-then-encrypt non-textual objects, singleparts
in a multipart, an entire multipart, etc in our scheme.

IETF took another approach to enhance privacy for
MIME by integrating Privacy Enhanced Mail(PEM) [4]
and MIME. It was known as PEM/MIME but is now called
MIME Object Security Services(MOSS) [5]. MOSS maps
a target object and its control block into a MIME multi-
part. This format is elegant but results in sacrificing back-
ward compatibility with PEM that targets RFC822 mes-
sages. This is why MOSS stopped using the word PEM.
Since PGP is now the de facto standard, such a departure
would be a tragedy for PGP. Our integration scheme does
not require any modifications to PGP at all, so it maintains
minimum compatibility with PGP/RFC822.

The key to spreading security services for MIME is not
in the elegance of the internal syntax but of the user in-
terface. It is crucial to provide an easy-to-use viewer and
an intuitive composer to MIME users enhancing security
features. Our PGP/MIME viewer provides a simple but
powerful interface. It automatically decodes any compli-
cated PGP/MIME message and recursively displays the an-
alyzed syntax with PGP warnings. Users can read any part
in any order and reply to an encrypted message as if it was
plain text. Our PGP/MIME composer maps file structure
to MIME format, processing PGP according to user speci-
fied marks. Though it does not requires users to understand
a composition grammar, users can create any complicated
PGP/MIME message without format limitations.

Throughout this paper, we use the acronyms “CT:”,
“CTE:”, and “CD:” to express “Content-Type:”, “Content-
Transfer-Encoding:”, and “Content-Description:” respec-
tively. While “MIME encoding” indicates encoding mech-
anisms provided by MIME such as “base64” and “quoted-
printable”, “PGP encoding” means encrypting, signing, or
signing-then-encrypting by PGP.

This paper is organized as follows: Section 2 specifies
the format of PGP/MIME. We explain the implementation
of our PGP/MIME viewer and composer in Section 3. Sec-
tion 4 gives evaluations of our design and implementation
of PGP/MIME. We describe implementation status in Sec-
tion 5 and conclude this paper in Section 6.

1



2 Format of PGP/MIME
This section describes the format of PGP/MIME. It is

designed to protect MIME objects with PGP and to en-
close PGP objects within the context of MIME messages.
For backward compatibility, our scheme makes use of
one Content-Type:, “application/pgp”. As far as the au-
thor knows, this kind of approach was originally found
in the withdrawn Internet-Draft entitled “An Alternative
PEM MIME Integration” by Schiller in 1993, though it
did not specify the “format” parameter. Our PGP/MIME
is based on the withdrawn Internet-Draft entitled “The ap-
plication/pgp MIME Content-type” by Borenstein et al in
1994, but encoding mechanisms are different. This section
describes the syntax of a MIME object whose content body
is a PGP object, which includes a text or a MIME object.

2.1 Definition of Application/PGP
PGP/MIME uses “CT: application/pgp” to enclose a

PGP object within MIME. The CT: may take one param-
eter “format”, whose value is “text” or “mime”. This pa-
rameter makes it possible to embed not only text but also a
MIME object in the PGP object. If the value of format pa-
rameter is “text”, it indicates that the PGP object contains
text. Otherwise a PGP object holds a MIME object. If the
parameter is omitted, it is identical to “format=text”.

A PGP/RFC822 message can be converted to a
PGP/MIME message with “Mime-Version: 1.0’, “CT: ap-
plication/pgp”, and optional “CTE:” fields. We call this
kind of PGP/MIME messages conventional PGP/MIME.
Note that user IDs to select public keys for encryption are
equal to mail addresses on a mail header such as To: or Cc:
for a PGP/RFC822 message or a conventional PGP/MIME
message because it has only one PGP object.

To maintain minimum backward compatibility, if the
parameter is omitted or is “text”(i.e. a conventional
PGP/MIME message), the PGP object is assumed to con-
tain localized text, which is not always US-ASCII. It can be
ISO-8859-1, ISO-2022-JP or whatever. The decoded text
by PGP should be treated according to local convention.
For example, we assumed that the text encoded by PGP is
ISO-2022-JP in Japan.

If a target object is not text, it should be converted into
a MIME object which consists of a content header and a
content body. Then, the MIME object is encoded by PGP
to get a PGP object, which is included by a MIME object
whose CT: is application/pgp.

Note that we cannot decide user IDs for public keys from
the mail header in PGP/MIME. For example, one part can
be encrypted for one person and another part can be en-
crypted for another person while the whole message is des-
tined to a mailing list.

2.2 CTE: considerations
PGP provides radix64 encoding, which is syntactically

identical to MIME base64 encoding but flagged in different
manners. The PGP mechanism is self-identifying, while
the MIME mechanism uses CTE: to indicate an encoding
type. There are two methods to convert a target object to a
“mail-safe” form. One is to encode a PGP output by MIME
encoding. The other is that PGP itself converts an object to
a mail-safe form and CTE: just indicates an encoding do-
main(i.e. 7bit or 8bit). Note that “7bit” and “8bit” specified
in CTE: means that no encoding is applied to its object.

Since the content header (whose content body is a PGP
object) cannot be protected with our scheme, it is quite pos-
sible for someone to forge or modify CTE: in the content
header. So, it is safer for MIME readers to pass the PGP
object in the content body to a PGP process without MIME
decoding. For this reason, we make use of PGP’s mail-safe
features rather than MIME encoding. (Note that CT: in the
content header is also under threat of modification. Unfor-
tunately, our scheme is vulnerable to this kind of attack.)

PGP objects are categorized into three types. Signed ob-
jects by PGP are 7bit or 8bit. For example, 7bit text such as
ISO-2022-JP results in a clear signature in 7bit whereas 8bit
text such as ISO-8859-1 are tranformed into a clear signa-
ture in 8bit. A binary object is converted into 7bit text with
radix64 encoding after the calculation of its signature.

Note that an object must be encoded into 7bit represen-
tation(i.e. 7bit, quoted-printable, or base64) before the sig-
nature calculation in the MOSS scheme. But such prepro-
cessing is optional in PGP/MIME. If 7bit transformation is
always required, a clear signature cannot be created from
8bit text. This limitation is very inconvenient to those who
usually use 8bit text to express their native language. 8bit
clear signatures have been used for a long time, so we can-
not sacrifice backward compatibility by forcing 7bit repre-
sentation. Usually a signature for ISO-8859-1 text is cre-
ated without the format parameter. If the transport system
does not support 8bit text, the localized 8bit text should be
converted into a MIME object with a proper CTE: before it
is passed to PGP.

The domain of encrypted and signed-then-encrypted ob-
jects by PGP is always 7bit with radix64 encoding. The
MIME object whose content body is a PGP object should
provide CTE: according to the encoding domain of the PGP
object. CTE: 7bit can be omitted but CTE: 8bit must be
provided.

2.3 Canonicalization
Since each operating system has their own type of line

break, line breaks of a target object must be canonicalized
before PGP calculates a digital signature and/or encrypts
a target object for interoperability. When the -t option is
specified, PGP first canonicalizes each line break to CRLF.
This line break is identical to that of RFC822, so we can
make use of this PGP feature. If a target object is localized
text, we should, of course, execute PGP with the -t option.

If a target object is not text, we first convert it to a MIME
object preparing an appropriate content header. It is pos-
sible to convert 8bit text to a MIME object for transport
system-safe. If the MIME object is “text”, “multipart”,
“application/postscript”, or “message”, it must be passed
to PGP as a line-based object. So, if the original object is
in the binary domain, it must be encoded to the 7bit domain
when it is tranformed to a MIME object.

Since multipart and message types allow recursive struc-
ture, MIME prohibits encoding of an entire object. So the
CTE: must be 7bit, 8bit or binary. In order to pass multi-
part and message to PGP as a line-based object, they must
not include objects in the binary domain. Objects in the
binary domain must be encoded by MIME before they are
enclosed in a multipart or message.

Other MIME objects in 7bit or 8bit domain should be
treated as line-based objects by PGP. If CTE: is “binary”, it
must be passed to PGP as binary. It is not necessary to apply

2



MIME encoding to the original object in the binary domain
before it is encoded by PGP. Since we do not specify the -t
option for MIME objects in the binary domain, line breaks
of the content header must be converted to CRLF before
this object is passed to PGP.

3 Implementation of PGP/MIME
It is crucial to provide an easy-to-use viewer and an in-

tuitive composer to MIME users privacy functionality so
that security services in MIME will be widely used. This
section describes a novel PGP/MIME interface, “Mew”
(Message interface to Emacs Window), which works on
Emacs. We first explain Mew’s PGP/MIME composer in
Section 3.1, then describe a viewer in Section 3.2. Since
all methods in this section are independent on the spec of
PGP/MIME, they are applicable to other privacy enhanced
MIME schemes such as MOSS.
3.1 Composer

Many MIME composers define their own complicated
composition grammar or force complex command line op-
tions to compose MIME messages. Complicated opera-
tions are not only hard to use but are also prone to miss op-
erations. Moreover, most composers fail to provide meth-
ods to support deep multipart. Such a complicated and
imperfect composing system will confuse users especially
when composing PGP/MIME messages. Thus, require-
ments for PGP/MIME composers can be summarized as
follows:

� The PGP/MIME composer must be able to compose
PGP/MIME messages with easy operations.

� The PGP/MIME composer must not define a compli-
cated composition grammar that is hard to understand.

� The PGP/MIME composer must not require the users
to understand MIME or other syntax.

� The PGP/MIME composer must be able to compose
PGP/MIME syntax without any limitations.

Mew provides two methods for composing
a PGP/MIME message. One is a mark based method for
creating any kind of PGP/MIME message. The other is a
shortcut to handle only localized text. We first describe the
shortcut method, then explain the mark based composing.

3.1.1 A shortcut for conventional PGP/MIME

Since users mostly use localized text in daily life, localized
text with PGP protection has been exchanged. So, it is a
good idea to create the most used PGP/MIME messages
without any troublesome operations. Non-MIME viewers
treat conventional PGP/MIME exactly as PGP/RFC822.
Note that we do not require pre-encoding to 8bit text, so
conventional PGP/MIME messages are completely back-
ward compatible with non-MIME viewers. Note also that
MIME viewers which do not support PGP/MIME treat the
messages as text/plain.

Mew provides three commands to create a conventional
PGP/MIME message. Each cuts the mail body in a draft
buffer to pass it to PGP, then insert the PGP output to the
draft buffer in turn. The signature function asks a user to

To: kazu@is.aist-nara.ac.jp
Subject: PGP signed message
Mime-Version: 1.0
----
This body is signed by PGP.

---
keiichi

Figure 1: An example draft

input his passphrase. This passphrase is never echoed back
and is delivered to PGP interactively. It should be noted
that if a passphrase is given to PGP as a command line
argument or via an environment variable, the passphrase
may be monitored by local eavesdroppers on a multi-user
OS. Thus, the passphrase must be sent to PGP interactively
to prevent eavesdropping by non-privileged users. But we
should keep in mind that privileged users may still monitor
a keyboard or pipe stream.

The function for encryption automatically extracts user
IDs from To: and Cc: fields to specify receivers to PGP.
Note that the sender’s user ID is also specified so that the
sender can decrypt the back up message. The function for
sign-then-encrypt executes PGP with extracted user IDs
then passes the input passphrase to PGP.

Since Mew runs on Emacs, each command is bound to
a key. Figure 1 shows an example of an RFC822 message
and Figure 2 illustrates a PGP/MIME message after a sig-
nature function is executed and a passphrase is input in the
mini buffer.

3.1.2 Mark based composing

Mew’s MIME composer provides a simple yet powerful
composing of file structure mapping to MIME syntax. That
is, directories correspond to multipart and files indicate sin-
gle part. A user can create any complex multipart with file
operations such as copy, link, remove, and make a direc-
tory, which are bound to single keys. The default CT: is
determined by the suffix of the filename. For example, ap-
plication/postscript is selected for the file “cat.ps”. Encod-
ing strategy is decided by pre-defined rules. For example,
base64 is chosen for audio/basic, quoted-printable for ISO-
8859-1 text. The user can change CT:, CD:, and CTE: at
any time. Multipart/Mixed is chosen for the default CT: of
directories. Figure 3 is an example of a draft buffer of a
multipart, depth 2.

In addition to the mail header and the mail body, multi-
part structure is displayed at the bottom of the draft buffer.
This region is prepared according to the user’s instruction.
Key bindings of the region are different from that of the
mail header and the mail body. The first column consists
of marks that indicate encoding(e.g. “B” for base64 and
“Q” for quoted-printable). The next column indicates the
part number where numbers for directories always end with
“0”. The third column shows file or directory names. Note
that the directory on the first line of the region indicates the
entire multipart message, which must be readable only by

3



To: kazu@is.aist-nara.ac.jp
Subject: PGP signed message
Mime-Version: 1.0
Content-Type: application/pgp
----
-----BEGIN PGP SIGNED MESSAGE-----

This body is signed by PGP.

- ---
keiichi

-----BEGIN PGP SIGNATURE-----
Version: 2.6.i

iQCVAgUBMCtrNhTyAnmgatc9AQFK5gP/Zyptfl1cX+OkbULgrUNkuOAhL4Wok+vJ
OPrD3TSIFZ/lh3T/Hjtjq6I6PELDKI9CXJFZRKgyCZhBCZRdXJP5yaWuC5S4gJNu
+zlLqs2TupfWJrK+wndRKP5N2DyxnxX3dd5CZhu9C1220/lV18zvIl5Vie0cowAe
1y/NyfxiuUs=
=hZka
-----END PGP SIGNATURE-----

Figure 2: A conventional PGP/MIME message

To: kazu@is.aist-nara.ac.jp
Subject: Cats
Mime-Version: 1.0
----
This is my cat.

---- multipart --
0 1/ Multipart/Mixed
1 00CoverPage Text/Plain
2.0 dir/ Multipart/Mixed

B 2.1 cat.gif image/gif "A pretty cat"
Q 2.2 cat.ps application/postsc..
---- multipart ----

Figure 3: Composing a complicated MIME message

4



the user for security reasons. The fourth column shows CT:
and the last column indicates CD:.

Just before sending the message, a MIME message is
automatically created according to the user specified files,
each CT:, each CD:, and each mark. In Emacs, ISO-
8859-1 is automatically chosen as the “charset” param-
eter for 8bit text, otherwise US-ASCII is selected. In
Mule(MULtilingual Enhancement to GNU Emacs)[6], the
charset is guessed from the Mule internal multi-lingual rep-
resentation.

Mew’s composer integrates MIME encoding and PGP
encoding, which are displayed as marks. In addition to
the marks “B” and “Q”, the marks “PE”, “PS”, and “PSE”,
which indicated PGP encrypt, sign, and sign-then-encrypt
respectively, are provided. Note that a PGP mark on direc-
tory means that PGP encoding is applied to the entire mul-
tipart. When the user puts “PE” or “PSE” marks on any
part, the user is asked to specify receivers. The user en-
ters comma-separated user IDs in the mini buffer and then
the information is displayed on the last column, overriding
CD:. Note that the sender’s user ID is additionally specified
during encryption so that the sender can decrypt a backup
message. Figure 4 illustrates an example of PGP/MIME
composing. The “PE” mark is given to part 2.0 and “PS”
is put on parts 1 and 2.1. Note that the user can cancel the
marks at any time.

Mew maps the given file tree to PGP/MIME in pos-
torder executing PGP as Emacs subprocesses correspond-
ing to PGP marks. For example, the file tree in Figure 4
is converted to PGP/MIME format as follows: First the re-
gion of the mail body is stored as a file name of “00Cov-
erPage” in the directory “1” to complete the file tree. Next
Mew walks around the directory “1” in postorder to create
a multipart. The charset is guessed for 00CoverPage since
it is text, it is then signed by PGP. At this time, the user is
required to input a passphrase. Next Mew goes down to
the directory “dir” to create another multipart. When Mew
passes “cat.gif” to PGP to calculate a signature, the user is
asked to enter the passphrase again because the previous
passphrase is not reused to prevent eavesdropping. After
“cat.ps” is encoded quoted-printable, the second multipart
is constructed. Mew then sends this multipart to PGP for
encryption. After this step is completed, the outer multipart
is prepared. Since the directory does not have a mark, the
whole process is finished.
3.2 Viewer

Some MIME viewers provide full MIME functionality
but many of them force users to read parts in the composed
order. This frustrates users who want to read any part in
any order. Since most viewers never cache analyzed MIME
syntax, users also become frustrated if they have to read the
same message repeatedly. This is very inconvenient, espe-
cially for PGP/MIME because users are always requested
to input their passphrase every time they read encrypted
PGP/MIME messages. It is natural that PGP/MIME users
want to reply and cite PGP/MIME messages as if they were
plain text. But PGP/MIME message should be stored in a
disk storage with PGP protected format for security rea-
sons. We thus summarize requirements for PGP/MIME
viewers as follows:

� The PGP/MIME viewer must provide users with rich
operations for each part.

� The PGP/MIME viewer must quickly display a
PGP/MIME message if it is read repeatedly.

� The PGP/MIME viewer must be able to treat a
PGP/MIME message as plain text but store the mes-
sage in a PGP protected format in disk storage.

We first describes the internal mechanism of Mew’s
PGP/MIME viewer in Section 3.2.1 and then explain how
to handle PGP waring in Section 3.2.2

3.2.1 Internals of Mew’s PGP/MIME viewer

Mew’s viewer consists of a local form decoder, a MIME
syntax analyzer, and a displayer. When a user reads a
MIME message, Mew copies the message into a cache
buffer of Emacs. The local form decoder decodes MIME
format according to CTE: to obtain raw data. If CT: is ap-
plication/pgp, it decrypts or verifies PGP objects. Every
time a PGP object is decrypted, the user is requested to
input his passphrase, that is, the passphrase is not reused
to prevent eavesdropping. The PGP decoded object is
recursively decoded according to CTE: if the format is
“mime”. When Mew runs on Mule, the decoder transforms
enveloped multi-lingual text to the Mule internal charac-
ter representation according to the charset parameter. Mew
also converts a conventional PGP/MIME message to Mule
internal character representation following a local conven-
tion. In this way, the decoder decodes a PGP/MIME mes-
sage in preoder so that each part has a native data image.

Next the analyzer analyzes the structure of the locally
formatted message recursively. It saves the analyzed syn-
tax as a local variable of the cache buffer. Cache buffers are
managed as an LRU list and the list-size is customizable. If
the message is a singlepart, the displayer displays the sin-
glepart according to CT:. So, a conventional PGP/MIME
message is simply displayed in a message buffer. If the
message is multipart, the displayer simply shows the struc-
ture in a summary buffer so that the user can select any part.
Figure 5 is an example of a displayer displaying a message
syntax in the summary buffer corresponding to Figure 4.

The user can move the cursor onto any part he or she
wishes and then display the part in any order. Since the
message has been already decoded and stored in the cache
buffer, the user can reply and cite the message as if it was
plain text. The user is not required to input the passphrase
the next time the message is read unless expires from the
cache.

Mew does not automatically decode PGP/RFC822 by
PGP because it does not have CT: application/pgp. Mew
does provide a function to decode a message by PGP man-
ually so that the user can decode PGP/RFC822 to obtain
localized text.

3.2.2 Warning handling

One of most important functionalities of enhancing privacy
services for MIME is to report the results of verification of a
digital signature. PGP reports the success of verification as
a “Good signature”. If any alteration is found, a “Bad sig-
nature” warning is returned. PGP’s key management sys-
tem provides a grassroot web of trust. The highlight of this
system is validity of a public key, an indication that the key

5



To: kazu@is.aist-nara.ac.jp
Subject: Cats
Mime-Version: 1.0
----
This is my cat.

---- multipart --
0 1/ Multipart/Mixed

PS 1 00CoverPage Text/Plain
PE 2.0 dir/ Multipart/Mixed "kazu"
PS 2.1 cat.gif image/gif "A pretty cat"
Q 2.2 cat.ps application/postsc..
---- multipart ----

Figure 4: Mark based composing for PGP/MIME

1 M08/11 keiiti-s@is.aist- Cats <<----Next_Part(Fri_Aug_11_23:43:52_1995)--
1 Text/Plain
2.1 image/gif "A pretty cat"
2.2 application/postscript

Figure 5: PGP/MIME syntax displayed in the summary buffer

actually belongs to the person to whom it says it belongs.
PGP warns the user if the validity of a public key is not
complete. Mew is designed to report the value of validity
— complete, marginal, untrusted, or undefined. Since Mew
automatically decrypts encrypted messages by PGP, users
may not notice they are encrypted. So, Mew notifies users
of the parts of a PGP/MIME message that are encrypted by
PGP.

An earlier version of Mew, that supported only conven-
tional PGP/MIME, inserted the report of PGP into the bot-
tom of the message. This approach is no longer practical
for PGP/MIME because an object encoded by PGP is not
restricted to text. A binary object is destroyed if the PGP
report is inserted into the bottom of it.

So, Mew makes use of content headers of each part to
hold the report of PGP. After the decoder decodes a PGP ob-
ject, it inserts an “X-Mew:” field whose value indicates the
report of PGP. The analyzer corrects X-Mew: fields analyz-
ing MIME syntax and saves them as a part of MIME syntax
to the local variable of the cache buffer. The displayer in-
serts corrected X-Mew: fields to the mail header when the
mail header is displayed so that the user can see the PGP
report first. This fields should not be stored statically since
validity of public keys will change. A sly cracker could in-
sert illegal X-Mew: fields to deceive the receivers. So, the
decoder carefully removes X-Mew: fields first.

Figure 6 shows an example of a PGP warning corre-
sponding to Figure 4. The number in angle brackets indi-
cates the part number. If the number is omitted, the warning
is for the entire message. The first line tells us that part 1
is signed by “Keiiti” whose public key’s validity is com-
plete and that the verification succeeded. The second line
shows that part 2 was encrypted multipart. Part 2.1 con-
tains a good signature by Keiiti. Figure 8 gives a snapshot

image of the PGP/MIME viewer displaying the message of
Figure 4. The GIF image of a cat, which is signed by Keiiti,
is displayed by an image viewer.

If the public key of an originator is not found in the recip-
ient’s keyring or the keyring itself does not exist, signature
verification fails. If a PGP/MIME message is not encrypted
for the recipient, PGP cannot decrypt it. Mew reports such
causes of PGP decoding failure to X-Mew: field.

4 Evaluations and experiences
The syntax of our PGP/MIME is highly dependent on

the implementation of PGP. Since PGP can distinguish
whether a PGP object is encrypted, signed, or signed-then-
encrypted by itself, we do not prepare a parameter to iden-
tify the PGP services. Schiller’s Internet draft prepared a
new value for the PEM parameter “Content-Domain:” in-
stead of the MIME parameter “format”. This approach is
not practical to PGP/MIME for two reasons. For backward
compatibility with PGP, we must not modify the PGP pro-
gram at all, so any new parameter or value should not be
defined for PGP. The other reason is that such a PGP param-
eter is meaningless for actual implementation. Consider
a MIME object containing a PGP object, which embeds a
MIME object. The decoding process is as follows: After a
MIME viewer removes the outer content header, it passes
the content body to PGP to get the inner MIME object, and
then it decodes the inner MIME object. Since PGP does
not tell the MIME viewer whether the embedded object is
MIME or text, the MIME viewer cannot decide the next
action for the PGP output. Thus, the MIME viewer must
determine the next action before it executes the PGP sub-
process.

An open question is here; “Is application/pgp appro-
priate for conventional PGP/MIME messages which are
signed by PGP?”. Since it is clear text and MIME view-

6



X-Mew: <1> Good PGP sign "SHIMA Keiichi <keiiti-s@is.aist-nara.ac.jp>" COMPLETE
X-Mew: <2> PGP decrypted.
X-Mew: <2.1> Good PGP sign "SHIMA Keiichi <keiiti-s@is.aist-nara.ac.jp>" COMPLETE

Figure 6: PGP/MIME warning

ftp://ftp.aist-nara.ac.jp/pub/elisp/Mew/mew-current.tar.gz

Figure 7: URL for Mew

Figure 8: A snapshot of the PGP/MIME viewer

7



ers treat an object whose subtype of CT: text is unknown as
text/plain, “text/pgp” with charset may be proper. We need
more experience to fix the spec.

Our PGP/MIME composer achieves our design goals.
The composer never defines its composition grammar nor
compels users to understand the syntax of PGP/MIME. In
fact, Mew users can create any complicated PGP/MIME
messages with a simple user manual. The file tree mapping
to PGP/MIME syntax is general enough that any other com-
posers on any OS can easily adopt it.

Our PGP/MIME viewer also achieves our design goals.
It stores PGP/MIME messages in the format in which they
were transported. It caches decoded messages in Emacs
buffers so that they can be treated as plain text and be
displayed quickly when they are repeatedly read by users.
Since the viewer displays the structure of messages, users
can enjoy rich operations on any part.

One of the most difficult problems is to forward a
PGP/MIME message to a third person. Since a PGP/MIME
message is encrypted for the receiver, it should be de-
crypted before forwarding so that the third person can read
it. MIME viewers must see if the message includes any
encrypted PGP objects then it must decrypt PGP objects
and reformat the entire message to obtain a mail-safe form.
We believe that a multipart editor can resolve this problem.
Since it has not been implemented yet, we do not give fur-
ther explanation here. Currently, Mew users are compelled
to save the decrypted part to a file, then to include the file
in a draft buffer.

5 Implementation status and availability
Mew now stably runs on Emacs version 18 and 19,

Xemacs, and Mule version 1 and 2. Most of Mew is writ-
ten by Emacs Lisp, and exceeds 11,000 steps. All features
described in this paper have been implemented as well as
many other rich functions. We are planning to enhance
warning handling during composition, especially for valid-
ity of public keys. We are also planning to integrate Net-
News to our system. The latest snapshot of Mew is dis-
tributed under GNU Public License 2 and is available from
the repository showed in Figure 7.

6 Conclusion
This paper described the design and implementation of

PGP/MIME. Our PGP/MIME scheme uses the “CT: appli-
cation/pgp” to enclose a PGP object within MIME and pro-
vides the “format” parameter to embed not only localized
text but also a MIME object within the PGP object. Those
who can decrypt a specific part are not restricted to the re-
ceivers of the message.

We implemented a novel PGP/MIME interface, “Mew”
on Emacs, which is available as free software. The
PGP/MIME viewer of Mew consists of a local form de-
coder, a syntax analyzer, and a displayer. When a user
reads a message, the local form decoder recursively de-
codes according to CTE:. It also recursively decrypts or
verifies PGP objects included in the MIME message, leav-
ing each PGP warning in a corresponding content header.
The analyzer analyzes the syntax of the locally formatted
message recursively and collects PGP warnings at the same
time. Then the displayer simply displays the syntax in an
Emacs buffer so that the user can select any part and shows
PGP warnings in the mail header. Since decoded messages

are cached, the user is never required to enter a passphrase
when reading the message again.

Mew provides two methods for composing PGP/MIME.
A shortcut method targets localized text that is mostly
used in daily life. Users can transform localized text to
conventional PGP/MIME with a single key action. The
other method is mark based composing, which allows users
to create complicated PGP/MIME messages intuitively.
Users only need to create a file tree and put marks on each
file or directory. Mew converts the directories to multipart
and files to singlepart, walking the file tree in postorder.
Each part is encoded by PGP according to the marks.
Acknowledgements

The author would like to thank anonymous referees for
providing valuable feedback and suggestions. The author is
grateful to Atsushi Shionozaki, Darren Stalder, and David
Worenklein for reviewing drafts of this paper.

References
[1] D. Crocker, “Standard for the Format of ARPA Internet

Text Message”, RFC822, 1982.

[2] N. Borenstein and N. Freed, “MIME (Multipurpose In-
ternet Mail Extensions) Part One: Mechanisms for
Specifying and Describing the Format of Internet Mes-
sage Bodies”, RFC1521, 1993.

[3] P. Zimmermann, “The Official PGP User’s Guide”,
MIT Press, 1995.

[4] J. Linn, “Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication
Procedures”, RFC1421, 1993.

[5] S. Crocker, N. Freed, J. Galvin, and S. Murphy, “MIME
Object Security Services”, RFC1848, 1995.

[6] M. Nishikimi, K. Handa, and S. Tomura, “Mule: MUL-
tilingual Enhancement to GNU Emacs”, Proceedings
of INET’93, pp. GAB-1–GAB-9, 1993.

8


