
Experience Report: Developing High
Performance HTTP/2 Server in Haskell

Kazuhiko YAMAMOTO

Internet Initiative Japan Inc., Japan

kazu@iij.ad.jp

Abstract

While the speed of the Internet has been increasing, HTTP/1.1
has been plagued by head-of-line blocking, low concurrency and
redundant headers. To solve these problems, HTTP/2 was stan-
dardized. This paper summarizes our experience implementing
HTTP/2 in Haskell. We found several techniques to improve the
performance of the header compression and identified a suitable
data structure for HTTP/2 priority. Also, we showed that Haskell
lightweight threads are useful for HTTP/2 where the common tac-
tics of one lightweight thread per connection cannot be used. The
HTTP/2 implementation of Warp, the popular HTTP server library
in Haskell, ultimately provides better throughput than its HTTP/1.1
counterpart.

Categories and Subject Descriptors C.2.2 [Computer Communi-
cation Networks]: Network Protocols—HTTP/2; D.1.3 [Program-
ming Techniques]: Concurrent Programming—Lightweight thread

Keywords HTTP/2, Header Compression, Priority, Lightweight
Thread

1. Introduction

HTTP is a killer application protocol for the deployment of the In-
ternet. The flagship version HTTP/1.1 (Fielding et al. 1997) was
standardized in 1997 and has been used for around 20 years with-
out revisions. In the years since its standardization, available band-
width has grown by orders of magnitude, dynamically generated
web content has become the norm, and diversity among client de-
vices has increased drastically. These changes have revealed several
problems with the aging protocol:

• HoL (head-of-line) blocking — Since HTTP/1.1 requests are
served in FIFO order, the next response cannot be sent until the
previous response is finished. If the server spends a long time
processing a request, the next request can be subject to arbitrary
delays.

• Low concurrency — A TCP connection can host only a sin-
gle request at a time. To increase concurrency, major browsers
make up to 6–8 TCP connections. For services for which this
concurrency is not sufficient, content is distributed onto multi-

ple servers. This practice, known as domain sharding, makes it
complex to manage content.

• Redundant headers — Because HTTP/1.1 is a stateless proto-
col, it is necessary to convey similar headers (cookies in par-
ticular) for each request to implement state. It is said that the
average size of request headers in 2015 is about 800 bytes.
This wastes network bandwidth, which is the most expensive
resource in browser-server communications.

To solve these problems, after three years of discussions, Inter-
net Engineering Task Force (IETF) standardized HTTP/2 (Belshe

et al. 2015), based on SPDY1, in 2015. HTTP/2 was designed
to maintain semantics such as headers and to achieve high per-
formance communication by introducing a new transport layer.
HTTP/2 has the following features:

• It exchanges data in frames asynchronously. Since frames have
IDs, browsers can associate response frames with their corre-
sponding requests. Therefore, servers are able to send responses
in any order.

• It uses only one TCP connection and can multiplex multiple
requests and responses, up to a configurable concurrency limit.
The minimum recommended value for this limit is 100 (Belshe
et al. 2015).

• It provides a header compression mechanism, called HPACK
(Peon and Ruellan 2015).

Other HTTP/2 features include window-based flow control both
for the connection as a whole and for each stream, server-initiated
streams (server push), and client-specified prioritization of re-
quests. Here stream is an HTTP/2 technical term which means a set
of request/response frames for specific content. A stream consists
of multiple frames with the same ID.

We joined the standardization process of HTTP/2 in 2013 and
continue to develop HTTP/2 in Haskell (Marlow et al. 2010). As

a result, we have already released the HTTP/2 library2 which pro-
vides a frame encoder/decoder, header compression, and nested pri-
ority. The author has also developed HTTP/2 functionality based
on the HTTP/2 library in Warp (Yamamoto et al. 2013) – a popular
HTTP server library – and released HTTP/2 enabled Warp in July
2015.

This paper summarizes our experiences with implementing
HTTP/2 in Haskell and is organized as follows: findings about
HPACK and priority are described in Section 2 and Section 3, re-
spectively. Section 4 demonstrates how to implement an HTTP/2
server using lightweight threads, and Section 5 evaluates perfor-
mance.

1 http://dev.chromium.org/spdy/
2 http://hackage.haskell.org/package/http2

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

Haskell’16, September 22-23, 2016, Nara, Japan
ACM. 978-1-4503-4434-0/16/09...
http://dx.doi.org/10.1145/2976002.2976006

74



2. Header Compression

The element technologies of HPACK are as follows:

• Static table — a predefined table whose entry is either a header
name or a pair of header name and header value, chosen in
the specification (Peon and Ruellan 2015). Each entry can be
accessed by index. Since the typical length of indices is seven
bits, sending indices instead of strings saves bandwidth.

• Dynamic table — similar to the static table, but with entries
dynamically registered. The dynamic table has an upper limit
for its size. If the registration of a new entry causes overflow,
old entries are removed. Each endpoint uses two dynamic tables
for sending and receiving per connection.

• Huffman encoding — encoding more frequently used letters in
header names and header values with fewer bits. The mapping
is statically defined.

2.1 High Performance Implementation of HPACK

We developed HPACK with simple data structures in purely func-
tional settings initially, but this implementation was slow. By pro-
filing a program which encodes headers and decodes the result, we
found the following two bottlenecks:

• Converting a header to an index in HPACK encoding

• Huffman decoding in HPACK decoding

For the first bottleneck, we introduced reverse indices instead
of searching the static/dynamic tables directly. It is necessary to
find an index from both a header name and a header name-value
pair. Logically speaking, we can make use of a finite map of finite
maps where the outer keys are header names and the inner keys are
header values.

The cause of the second bottleneck is bit by bit transition in
the Huffman binary tree. To improve performance, we adopted a
method to calculate transition destinations by n bits basis in ad-
vance (Pajarola 2003). Logically, this converts the Huffman binary
tree to an 2n-way tree. As the encoded headers always have byte
boundary with padding, 2, 4 and 8 are reasonable candidates for n.
If n gets larger, the performance gets better, but more memory is
necessary. We chose 8 for the best performance. Soon thereafter,

this technique was adopted by nghttp23, the de facto reference im-
plementation of HTTP/2, followed by other HTTP/2 implementa-
tions.

Even with these improvements, performance was not satisfac-
tory. Therefore, we gave up the purely functional implementation
and switched to direct buffer manipulation. One technique which
we found is copy avoidance. The format of Huffman encoded head-
ers are length-value. The byte count of an integer is variable, and
the length of Huffman encoded headers is not known in advance.
So, a naive implementation encodes a header in a temporary buffer,
obtains the length of the result, encodes the length in the target
buffer, and copies the result from the temporary buffer. We found
that this copy is avoidable by guessing the length of the result. In
our experiments, Huffman encoding can compress by 20 percent
on average for sample data provided from IETF. Thus, we can esti-
mate the length of the result using a factor of 0.8. If the estimated
length occupies the same number of bytes as the true length, no
copy is necessary. Otherwise, the result must be moved within the
target buffer. No temporary buffer is needed. This technique was
also inherited by other HPACK implementations.

The finite map of finite maps for reverse indices above was
not sufficient. We were suggested to introduce tokens for header
names to improve the performance of reverse indices (Oku). The

3 https://nghttp2.org/

tokens are an enumeration whose members are organized by the
header names defined in the static table. A token holds an index to
reverse index arrays and other useful information statically defined.
Since header names used in HPACK are lower-case only, one string
comparison is necessary to convert a header name to a token:

toToken :: ByteString -> Token
toToken bs = case len of

3 -> case lst of
97 | bs == "via" -> tokenVia
101 | bs == "age" -> tokenAge
_ -> makeTokenOther bs

4 -> case lst of
101 | bs == "date" -> tokenDate
103 | bs == "etag" -> tokenEtag
...
_ -> makeTokenOther bs

...
_ -> makeTokenOther bs

where
len = Data.ByteString.length bs
lst = Data.ByteString.last bs

With these tokens, we introduced the three reverse indices:

A An array of finite maps for the static table. The array is accessed
with the tokens, and the finite maps are accessed with header
values. Indices for header name-value pairs and header names
can be resolved. Note that most finite maps in this reverse index
are empty because header values are not defined for most header
names in the static table.

B An array of references to finite maps for dynamic table. The ar-
ray is accessed with the tokens, and the finite maps are accessed
with header values. Indices for header name-value pairs whose
header names are defined in the static table can be resolved.

C A reference to finite maps for dynamic table. The finite maps
are accessed with header name-value pairs. Indices for header
name-value pairs whose header names are not defined in the
static table can be resolved.

The look-up algorithm is as follows: for a header name defined
in the static table, reverse index B is queried first. If an index for the
name-value pair is found, it is returned. Otherwise, reverse index
A is queried to obtain an index for the header name or the name-
value pair. For a header name not defined in the static table, reverse
index C is queried to obtain an index for the name-value pair. While
two lookups in O(log n) are necessary for the original scheme,
essentially one lookup is used for most cases for this new scheme.

With the above improvements and some others, the performance
became satisfactory. Figure 1 shows the performance of the initial
implementation (1), the middle one with reverse indices/2n way
trees (2) and the final one (3) for encoding (Enc) and decoding
(Dec) with 646 sets of headers provided by IETF. For measurement,
we used Xeon E5-2650Lv2 (1.70GHz/10 core/25MB) without hy-
per threading x 2 with 64G memory for hardware, CentOS 7.2 for
OS, and GHC (Marlow and Peyton Jones 2012) 7.10.3 for Haskell
compiler. The benchmark framework is criterion. To stabilize
benchmark results, CPUs are set to the performance mode.

3. Priority

HTTP/2 multiplexes multiple streams in a TCP connection. It is
undesirable for content needed immediately for rendering to be
delayed while other less-crucial content occupies the connection
bandwidth. Thus, HTTP/2 provides a way of prioritizing individual
streams. Priority for a stream consists of a weight value (from 1
to 256) and a stream ID of dependency. The larger the weight, the
greater the preference. A set of priorities forms a dependency tree
(Figure 2).

75



M
ea

n
 t

im
e 

(m
s)

0

10

20

30

40

50

60

70

Enc 1 Enc 2 Enc 3 Dec 1 Dec 2 Dec 3

Figure 1. The performance progression of HPACK encoding and
decoding. The smaller, the better.

0

3 5

7 9 11 13 15

Weight 201 Weight 101 

Weight 16 Weight 1 Weight 16 Weight 32 Weight 64 

Figure 2. An example of HTTP/2 priority tree. A circle and its
number indicate a stream and a stream ID, respectively. ID 0 is a
special stream ID to represent a root. For instance stream 3 and
5 depend on stream 0 and they share the resource of stream 0
proportionally to weight 201 and 101, respectively. Stream 7, 9, 11
have stream 3 as their parent and they share the resource of stream
3 proportionally to weight 64, 32 and 1, respectively.

Streams with the same parent share resources proportionally
based on their weight. Implementors can define what a resource
is. Though few HTTP/2 servers implement priority, those that do
use either the byte count of sent data or the number of sent frames.

In this paper, we use the technical term HTTP/2 priority queue
to refer to data structures which implement a priority tree of one
parent with one or more children. General priority trees, whose
height is more than 2, can be implemented based on HTTP/2
priority queues.

3.1 HTTP/2 Priority Queues

If we implement HTTP/2 priority queues with max heaps whose
precedence is weight, proportion is achieved but fairness is not
guaranteed. For example, consider stream A with weight 200 and
stream B with weight 100. Each corresponding content is logically
divided into fragments fit to a send buffer. Suppose the first frag-
ment of stream A and that of stream B are enqueued. In this case,
the fragment of stream A is dequeued and sent first. Suppose that
the next fragment of stream A is enqueued with weight 199. This
time, the fragment of stream A will again be dequeued. In this
scheme, the fragment B is not dequeued until 100 fragments of
stream A are dequeued. What we want to implement is a sequence
that is proportional and fair to weight such as A, A, B, A, A, B, A,
A, B and so on.

3.2 Random Skew Heap

As the first attempt, we implemented fairness by pseudo-random
number generation. That is, an entry to be dequeued is selected by
generating a random number with total weight as maximum. To
implement enqueueing and dequeueing in O(log n), we used skew
heaps (Sleator and Tarjan 1986) as the base data structure. The
core operation of skew heaps is merge. An entry can be inserted
by merging the singleton of the entry and the heap. Extracting the

maximum entry can be done by removing the root and merging the
two sub heaps. We introduced randomness to the merge operation.

The following describes the core algorithm in Haskell4:

type Weight = Int
data Heap a = Tip

| Bin Weight -- total weight
a -- element
Weight -- element weight
!(Heap a) !(Heap a)

merge :: Heap t -> Heap t -> Heap t
merge t Tip = t
merge Tip t = t
merge l@(Bin tw1 x1 w1 ll lr) r@(Bin tw2 x2 w2 rl rr)

| g <= tw1 = Bin tw x1 w1 lr $ merge ll r
| otherwise = Bin tw x2 w2 rr $ merge rl l
where

tw = tw1 + tw2 -- total weight of two trees
-- pseudo random
g = unsafePerformIO $ uniformR (1,tw) gen

Using this code on the Internet, we noticed that the deletion op-
eration is also necessary. For instance, let’s suppose that a user
is browsing with multiple tabs. Unselected tabs are given low
weights. When the user selects one of the unselected tabs, its weight
increases. The new weight is sent from the browser to the server.
To reflect this change quickly on the server side, the old entry of
the newly selected tab should be deleted and enqueued again with
the new, higher weight. A skew heap does not provide the delete
operation. So, for deletion, we need to re-construct the entire heap,
resulting in complexity of O(n log n).

3.3 Weighted Fair Queueing

The second attempt was weighted fair queueing (WFQ) (A.Demers
et al. 1989). WFQ is a queue which is proportional and fair with re-
spect to weights. It can be implemented by min heaps with inverted
weights as precedence. The smaller the precedence, the greater the
preference. In addition to the entries, a WFQ holds the minimum
precedence among them as the current precedence. When a new
entry is enqueued, its precedence is calculated by adding the in-
verted value of its weight (multiplied by a certain constant to round
up to an unsigned integer) to the current precedence. In the case
where a dequeued entry is enqueued again, the new precedence is
calculated by adding the inverted value of its weight to its previous
precedence.

Since precedence values grow linearly, they can overflow. It is
not necessary to worry about this overflow if precedence is defined
as an unsigned integer (Oku). All precedence values are in a certain
range and arithmetic operations of unsigned integers is based on
modular arithmetic. So, the magnitude relationship holds even in
overflow cases if a proper comparison is used. The following is a
comparison example with a constant value 65536:

newtype Precedence = Precedence Word deriving Eq
instance Ord Precedence where

Precedence w1 < Precedence w2 = w1 /= w2
&& w2 - w1 <= 65536

Precedence w1 <= Precedence w2 = w2 - w1 <= 65536

3.4 Comparing Data Structures

To study suitable data structures for HTTP/2 priority queues, we
implemented the following data structures in Haskell.

• Random skew heap

4 unsafePerformIO is used just because of simple implementation and
cloud be removed by passing a list of random values.

76



• WFQ with a bootstrapped skew binomial heap (Brodal and
Okasaki 1996)

• WFQ with a priority search queue (PSQ) (Hinze 2001)

Table 1. Complexity on priority queue operations in worst-case
complexity

enqueueing dequeueing deletion

Random skew heap O(logn) O(logn) O(n logn)
Skew binomial heap O(logn) O(logn) O(n)
PSQ O(logn) O(logn) O(logn)

Table 1 shows complexity of enqueueing, dequeueing and dele-
tion for the three implementations. With the benchmark environ-
ment above, we measured the performance as follows:

• Preparing an HTTP/2 priority queue with 100 entries generated
by a pseudo random generator, and repeating dequeueing-and-
enqueueing 10,000 times (the left hand side of Figure 3).

• Preparing an HTTP/2 priority queue as mentioned above and
removing all entries (the right hand side of Figure 3).

M
ea

n
 t

im
e 

(m
s)

0

2

4

6

8

10

12

14

R
an

do
m

 sk
ew

 h
ea

p

Ske
w

 b
in

om
ia

l h
ea

p
PSQ

M
ea

n
 t

im
e 

(µ
s)

0

500

1000

1500

2000

2500

R
an

do
m

 sk
ew

 h
ea

p

Ske
w

 b
in

om
ia

l h
ea

p
PSQ

Figure 3. Performance of enqueueing/dequeueing (left) and dele-
tion (right). The smaller, the better.

According to these figures, PSQ provides high performance.
PSQ has the heap characteristic, and the complexity of its enqueue-
ing and dequeueing operations is O(log n). It also has the search
tree characteristic, and the deletion operation is in O(log n). PSQ
in purely functional settings can be combined with STM to create
a deadlock-free data structure in concurrent environments (Marlow
2013). Note that all control frames share the stream ID 0; multiple
control frames cannot be enqueued into PSQ. So, it is necessary
to prepare another simple queue for control frames and to process
them preferentially.

Based on these considerations, we changed our implementation
of HTTP/2 priority queues from random skew heaps to WFQ with
PSQ.

4. HTTP/2 Implementation in Warp

This section discusses how to implement HTTP/2 servers with
Haskell’s lightweight threading model. The author, one of the main
developers of Warp, has developed and maintained HTTP/2 func-
tionality in Warp as described below.

The common tactics for implementing servers for a simple
application protocol such as HTTP/1.1 in Haskell is to use one
lightweight thread per connection (Marlow 2002). Unlike event-
driven programming, this allows us to write HTTP/1.1 code in a
straightforward manner. A lightweight thread in Warp’s HTTP/1.1
implementation repeatedly receives an HTTP request, parses the
request to produce a request value, passes it to a web application

to get a response value, composes it into an HTTP response, and
sends it.

Our question was whether lightweight threads were useful to
implement servers for HTTP/2, which includes its own transport
layer. Since an HTTP/2 server multiplexes contents, a sender thread
is needed to multiplex the application’s streams onto the socket.
The sender repeatedly dequeues a response value from an nested
HTTP/2 priority queue (called output queue), compresses its head-
ers, encodes its data to frames until the buffer is filled or a flow-
control window is exhausted, sends the frames, and if data remains
to be sent, re-enqueues the response on the output queue. In a sym-
metric fashion, we also prepare a receiver. The receiver repeatedly
decodes received frames, uncompresses headers, produces a re-
quest value, and enqueues it to an input queue. Figure 4 illustrates
this skeleton.

Receiver Sender

Input queue Output queue

Frames Frames

?

Figure 4. The skeleton of HTTP/2 implementation in Warp.
Rounded-edged rectangles indicate lightweight threads.

One challenge is the organization of the components between
the input queue and the output queue. Our method is one lightweight
thread per stream. We call this lightweight thread a worker. The
role of workers is to dequeue a request value from the input queue,
pass it to a web application, and enqueue the application’s response
value onto the output queue.

We found that throughput is not satisfactory if a worker is
spawned on demand. So, we introduced a worker pool where work-
ers are created in advance. If many workers are prepared, many
context switches and high contention against the two queues occur.
On the other hand, HoL is not avoidable if there is only one worker.
Through a trial and error process by measuring memory footprint
and throughput, we take 3 as the number of workers currently.

We also observed that using a bounded queue as the input queue
results in increased memory footprint. Thus, we adopted a simple
queue for the input queue. Since the only component enqueueing
to the input queue is the receiver, flow rate can be controlled to
some extent. That is, when the receiver enqueues a certain number
of requests to the input queue, it requests a context-switch to the
scheduler of lightweight threads.

ワーカワーカ

Worker
manager

Receiver SenderWorker

Input queue Output queue

Time keeper Waiter

Frames Frames

Spawn Signals

Figure 5. The HTTP/2 architecture in Warp. Rounded-edged rect-
angles indicate lightweight threads.

Figure 5 illustrates the current HTTP/2 architecture in Warp.
Components not described yet are as follows:

• Worker manager — Spawning workers at boot time and when
requested.

• Time keeper — If a worker does not finish its procedure, the
time keeper sends a signal to the worker so that it can move to
another request.

77



• Waiter — This thread is spawned when a response value is not
ready to be sent (e.g. due to per-stream flow control). It waits for
the response to be sendable, enqueues it onto the output queue,
and goes away.

4.1 Optimistic Enqueueing

Warp is the primary handler for the Web Application Interface

(WAI)5. This API defines the following three response types:

• File — a static file

• Builder — in-memory content

• Streaming — data flow continuously generated by a web appli-
cation

For the file and builder types, when a worker receives a response
value, the corresponding web application has already finished. So,
after enqueueing the response value to the output queue, the worker
can serve another request.

Initially, we adopted pessimistic enqueueing. In this scheme, the
worker checks the stream window before enqueueing the response
onto the output queue. If the flow control window is closed, the
worker instead spawns a temporary waiter to enqueue the response
once the window becomes open.

For streaming responses, an application continues to work even
after returning a response value. The corresponding worker cannot
move on to serve another request until the streaming completes.
This could result in no workers being available to dequeue new
requests, if all workers are occupied by streaming responses. Thus,
the worker asks the worker manager to spawn another worker
before running the stream. When the streaming is finished, the
worker exits.

A worker serving a streaming response creates a queue for re-
sponse fragments and acts as a bridge between the application and
this stream queue. A response value containing a reference to the
stream queue is enqueued onto the output queue. This enqueue-
ing was also initially pessimistic. That is, to ensure that the output
queue could not contain empty stream queues, a dedicated waiter
would wait until data was available on the stream queue before
placing it onto the output queue. The sender would dequeue this
response value (containing the stream queue), send all or part of
it over the connection, and enqueue it to the output queue again if
necessary. So, the sender needs to synchronize with the waiter in
this case through a communication channel.

As it appeared that pessimistic enqueueing resulted in poor
throughput, optimistic enqueueing is applied currently. That is, a
worker enqueues a response value to the output queue without
checking the stream window or the stream queue. After dequeueing
a stream response value, the sender checks that the stream window
is open and there is data available on the stream queue. If either
condition is not met, the sender spawns a temporary waiter, which
waits until data can be sent on the stream, then re-enqueues the re-
sponse value to the output queue and exits. Optimistic enqueueing
simplifies the architecture and improves throughput.

4.2 Packing Output Frames

The HTTP/1.1 implementation has a 16 KiB send buffer per con-
nection. For the builder type and the streaming type, the content
is repeatedly sent using the send buffer until the entire content is
transmitted.

For the file type, a file is sent without copying it between the ker-
nel space and the user space thanks to the sendfile system call on
UNIX. When a file is opened, a file descriptor is created with the
global lock of the file descriptor list in the kernel. Hence, if a file

5 http://hackage.haskell.org/package/wai

is opened everytime when a file response is sent, throughput be-
comes poor. To improve performance, Warp caches and reuses file
descriptors when appropriately configured. The sendfile system
call is designed to preserve the offset of a file descriptor in the ker-
nel. For this, the system takes an offset value and a length value as
arguments. Thanks to this clean API, multiple lightweight threads
can share file descriptors.

The sender of the HTTP/2 implementation fills the 16 KiB send
buffer with a fragment of stream data only once per entry retrieved
from the output queue, to implement priority at a granularity of 16
KiB buffers. If the entire content cannot be sent in one fragment,
a response value representing the remainder of the response is re-
enqueued, so that it will be delayed appropriately according to its
priority. If the send buffer still has room after a response value
is completed, the sender tries to fill the send buffer with other
fragments. In this scheme, the sendfile system call cannot be
used for the file type. Thus, we adopt the pread system call, which,
like the sendfile system call, also preserves offsets in the kernel.

The following is the algorithm for dequeueing from the control
queue and the output queue based on STM:

• If the control queue is not empty, dequeue control frames.

• If the control queue is empty:

Wait until the connection window is open.

If the output queue is not empty, dequeue a response value.

If the output queue is empty:

− If the send buffer is empty, retry this procedure.

− If the send buffer is not empty, give the flush instruction.

The connection window is consumed only by responses which
have bodies. Responses without bodies should be sent even if the
connection window is closed. The algorithm above cannot cover
this case, but we consider this case to be rare.

5. Evaluation

To evaluate the performance of Warp’s HTTP/2 implementation,
we measured the throughput of the following three servers:

• Warp version 3.2.3 with a simple web application which re-
sponds to all requests with the same in-memory 612-byte
HTML. This software shows the maximum performance of
Warp.

• Mighty6 version 3.3.0 — a practical HTTP server to provide
static files, CGI and reverse proxies implemented as a web
application on Warp version 3.2.3

• nginx 1.9.97 implemented in event driven programming in C

We carefully configured Mighty and nginx to behave as simi-
larly as possible, such as reusing file descriptors, no recording logs,
etc. Our benchmark environment is two computers as described
above directly connected via a pair of 10 Gigabit Ethernet. As a
benchmark tool, we used h2load in nghttp2, which can measure
throughput for both HTTP/1.1 and HTTP/2.

For HTTP/2, 100 connections were created with 100 as the
maximum value of concurrency for each, and an HTTP file of
612 bytes (nginx’s default index.html) was downloaded 1,000,000
times in total. For HTTP/1.1, 600 connections were used to increase
the HTTP/1.1 concurrency to 6 and the same file was downloaded
the same number of times. The numbers of used cores were 1,
2, 4, 8 and 16. For each configuration, we took the median of 5
measurements. The result is shown in Figure 6.

6 http://hackage.haskell.org/package/mighttpd2
7 http://nginx.org/

78



16151413121110987654321

900,000

800,000

700,000

600,000

500,000

400,000

300,000

200,000

100,000

0

Figure 6. Throughput of Warp (in-memory), Mighty and nginx for
both HTTP/1.1 and HTTP/2. The larger, the better.

As far as this benchmark is concerned, the HTTP/2 implemen-
tation achieves better performance than the HTTP/1 implementa-
tion for both Warp and Mighty. It is difficult to compare different
HTTP servers fairly since each server implements a different set
of features. Though nginx shows better performance than Mighty
on small numbers of cores, its specification conformance is lack-
ing: while nginx passes only 37 of the 71 test cases provided by

h2spec8, Mighty passes all 71. The performance gap between the
two servers may be partially attributed to their differing levels of
conformance to the specification: the additional logic needed for
each case is likely to come with a performance cost.

One obstacle to high performance network servers in Haskell
relates to file paths. A file path (FilePath) is defined as a list of
Unicode characters ([Char]) in Haskell. So, file path operations,
such as comparing, concatenating and converting to other data
structures, are inefficient. We hope that file paths will be defined
with a proper data structure in the future.

Next we took heap profiles of Warp to investigate memory
footprint using h2load three times with the same parameters above
on 16 cores. Figure 7 and 8 shows heap profiles for HTTP/1.1
and HTTP/2, respectively. As described above, seven lightweight
threads are spawned per HTTP/2 connection while one lightweight
thread is used per HTTP/1.1 connection. Almost the same amount
of memory is used. HTTP/2 uses more memory for data other than
stacks. Note that GHC allocates stacks of lightweight threads in
the heap area. Considering the dynamic tables of HPACK and so
on, this is reasonable.

Acknowledgments

We deeply thank Moto Ishizawa, Tatsuhiro Tsujikawa and Kazuho
Oku. Without their insight and discussions with them, this research
would be impossible. We would like to extend our appreciation to
Michael Snoyman and Andrew Pritchard for their thorough proof-
reading of this paper. We sincerely thank anonymous referees for
their useful comments to improve draft versions of this paper.
Lastly, we would express gratitude for the HTTP/2 community in
Japan.

References

A.Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a
Fair Queueing Algorithm. ACM SIGCOMM Computer Communication
Review, 19, 1989.

8 https://github.com/summerwind/h2spec

seconds0.0 20.0 40.0 60.0 80.0

b
y
te

s

0M

2M

4M

6M

8M

10M

12M

14M

16M

OTHER

STACK

Figure 7. Heap profile of Warp handling HTTP/1.1

seconds0.0 20.0 40.0 60.0 80.0

b
y
te

s

0M

2M

4M

6M

8M

10M

12M

OTHER

STACK

Figure 8. Heap profile of Warp handling HTTP/2

M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol Version
2 (http/2), 2015. RFC7540.

G. Brodal and C. Okasaki. Optimal Purely Functional Priority Queues.
Journal of Functional Programming, 6:839–857, 1996.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1, 1997.
RFC2068, RFC2616 and RFC7230–7235.

R. Hinze. A Simple Implementation Technique for Priority Search Queues.
In Proceedings of ICFP, 2001.

S. Marlow. Developing a high-performance web server in Concurrent
Haskell. Journal of Functional Programming, 12(4+5):359–374, 2002.

S. Marlow. Parallel and Concurrent Programming in Haskell. O’Reilly,
2013.

S. Marlow and S. Peyton Jones. The Glasgow Haskell Compiler.
In the Architecture of Open Source Applications, volume 2. 2012.
http://www.aosabook.org/en/ghc.html.

S. Marlow et al. Haskell 2010 Language Report, 2010.

K. Oku. The auther of h2o, DeNA Co., Ltd. Private communication.

R. Pajarola. Fast Prefix Code Processing. In Proceedings IEEE ITCC
Conference, 2003.

R. Peon and H. Ruellan. HPACK: Header Compression for HTTP/2, 2015.
RFC7541.

D. D. Sleator and R. E. Tarjan. Self-Adjusting Heaps. SIAM Journal on
Computing, 15:52–69, 1986.

K. Yamamoto, M. Snoyman, and A. Voellmy. Warp. In
The Performance of Open Source Applications. 2013.
http://www.aosabook.org/en/posa/warp.html.

79


