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ABSTRACT

For every HTTP/1.1 request and response, almost the same
set of headers is transferred. This wastes bandwidth, the
most expensive resource of the browser-server communica-
tion. To solve this issue, header compression for HTTP/2 was
standardized. During the standardization, we found that one
element of the compression technology, the so called reference
set, contributes little to the compression ratio while its mech-
anism is complicated. With our proposal, the reference set
was removed and the specification and implementations were
drastically simplified. For high performance implementation
of header compression, we devised token-based reverse indices,
length guessing for Huffman encoding, and pre-calculated
state transitions for Huffman decoding.
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1 INTRODUCTION

One of the issues of HTTP/1.1 [18] is header redundancy.
Almost the same set of headers is transferred between a
browser and a server for every request and response. Because
HTTP/1.1 is a stateless protocol, large cookie values are
used in request headers to implement state. It is said that
the average size of request headers is 800 bytes. This wastes
bandwidth – the most expensive resource in browser-server
communications.

Google Inc. designed and implemented SPDY [14] to solve
the issues of HTTP/1.1, including low concurrency and head-
of-line blocking. Their solution for the redundant header
issue was header compression based on DEFLATE [17]. Sub-
sequently, the CRIME attack [2] showed that this method
is insecure. SPDY compresses the entire set of headers. If
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an attacker can inject a header, they are able to observe the
varying size of compressed headers, even in an encrypted
channel.

Though the Internet Engineering Task Force (IETF) [15]
standardized HTTP/2 [16] based on SPDY, it took different
approach for header compression from SPDY’s. HTTP/2
header compression, so called HPACK [23], compresses header
by header, to resist the CRIME attack.

We participated in the standardization of HTTP/2 and
HPACK and continuously checked the inter-operability of
HPACK with our three independent implementations:

∙ HPACK library included in nghttp2 [11] — the de facto
reference implementation of HTTP/2 written in C.

∙ HTTP/2 library included in H2O [4] — a high perfor-
mance HTTP/2 server written in C.

∙ HTTP/2 library [10] [24] written in Haskell [20] — it
implements all compression methods described later.

This paper summarizes our experiences on HPACK. Con-
tributions of this paper are as follows:

Specification: we show that one element compression tech-
nology, the so called reference set, contributes little
to the compression ratio, and we propose to remove
it from the HPACK drafts. This discovery resulted in
a much simpler specification and hence better inter-
operability.

Implementation: we found implementation techniques to
improve performance, including token-based reverse
indices, length guessing for Huffman encoding, and
pre-calculated state transitions for Huffman decoding.

It is highly probable that our implementation techniques
can be used in future protocols such as QUIC, a UDP-based
multiplexed and secure transport [12].

This paper is organized as follows: Section 2 explains how
we contributed to simplify the specification of HPACK. We
show implementation techniques to improve performance in
Section 3, and evaluate this in Section 4. Section 5 describes
conclusions and future work.

2 SIMPLIFYING THE SPECIFICATION

This section discusses the HPACK specification. The critical
elements of HPACK (RFC7541) are as follows:

Static table: a predefined table whose entry is either a
header name or a header name-value pair. Each entry
can be accessed through an index. For example, 31
is the key for “content-type” and 8 is for the pair of
“accept-encoding” and “gzip, deflate”. Since the typi-
cal length of indices is seven bits, transferring indices
instead of strings saves bandwidth.
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Dynamic table: a table similar to the static table, but
entries are registered dynamically. The dynamic table
has an upper limit to its size. If the registration of a new
entry causes table overflow, old entries are removed.
Each endpoint uses two dynamic tables, one each for
sending and receiving per connection.

Huffman encoding [19]: encoding more frequently used let-
ters in header names and header values with fewer bits.
The mapping is statically defined.

Also, HPACK draft 08 [5] or earlier defined the reference set:

Reference set: a set of indices to represent headers. A client
saves the reference set of the headers of a request. When
sending the next request, it prepares the reference set of
the next request and calculates difference between the
previous one and the current one. It requests addition
and deletion for indices which have newly appeared or
disappeared, respectively. If the number of common
indices is large enough, the total length gets shorter.

2.1 Removing Reference Set

The algorithm of HPACK decoding (decompression) is unique
and clearly described in the specification. On the other hand,
that of HPACK encoding (compression) is not defined con-
cisely. We explored the design space of HPACK encoding
and created eight methods. Table 1 describes their names
and use/non-use of the element. Note that the reference set
depends on both the static table and the dynamic table.

Table 1: Eight compression methods of HPACK draft
08

static
table

dynamic

table
reference

set
Huffman
encoding

Naive not used not used not used not used

NaiveH not used not used not used used

Static used not used not used not used

StaticH used not used not used used

Linear used used not used not used

LinearH used used not used used

Diff used used used not used

DiffH used used used used

The HTTP/2 community in Japan [9], made test cases for
HPACK inter-operability [7]. We verified the correctness of
our implementations with these test cases. Also, the commu-
nity calculated the compression ratio [1] for several HPACK
implementations with header sample data [8] provided by
the IETF. The sample data consisted of 31 sets, where each
set included multiple headers (the minimum was 2 and the
maximum 646). The compression ratio was the length of
compressed headers divided by that of original headers.

Using this sample data and this calculation, we computed
the average compression ratio for the eight methods(Figure 1).
Since the format of HPACK has overhead, the compression
ratio of “Naive”, which uses no element technologies, is over
1.0.

Figure 1 shows:
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Figure 1: The average compression ratio of eight
compression methods. The smaller, the better.

∙ The static table is effective (e.g. Naive vs Static)

∙ The dynamic table is effective (e.g. Static vs Linear)

∙ Huffman encoding is effective (e.g. Naive vs NaiveH)

∙ The reference set is ineffective (e.g. Linear vs Diff)

In fact, Huffman encoding saves 31.36 bytes per frame on
average, compared to only 1.57 bytes for the reference set.
This is because the number of common indices tends to be
small as the typical length of indices is seven bits.

Based on this study, we advised the IETF to remove the
reference set. The advantages of this proposal are as follows:

∙ The reference set is a complex mechanism. For instance,
it has a special corner case [13]. If the reference set is
removed, the specification gets much simpler, resulting
in improved inter-operability.

∙ The compression ratio is almost the same even if the
reference set is removed.

∙ Without the reference set, the order of headers is always
preserved on the decoding side.

Nobody could show effective cases for the reference set.
As a result, the reference set was removed in HPACK draft
09 [6]. This also made implementations much simpler. 24.5%
(704/932) and 8% (2249/2450) lines of code were removed
from the main part of HTTP/2 library in Haskell and that
of nghttp2, respectively.

3 HIGH PERFORMANCE
IMPLEMENTATION

This section summarizes techniques to improve the perfor-
mance of HPACK encoding and decoding. Our profilings
shows the following have room for improvement:

∙ Converting headers to indices in HPACK encoding

∙ Huffman encoding in HPACK encoding

∙ Huffman decoding in HPACK decoding

We will discuss these items one by one in this Section.
Complexity of operations is in worst-case unless explicitly
mentioned.

3.1 Headers to Indices

In HPACK decoding, we convert indices to header names or
header name-value pairs. This is accomplished by accessing
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the static and dynamic tables in 𝒪(1). In HPACK encoding,
however, naive implementations must search the tables to
convert header names or header name-value pairs into indices.
This operation is 𝒪(𝑛) where 𝑛 is the length (the number
of entries) of the tables. The length of the static table is 61.
The length of the dynamic table can be 128 at most for the
initial case where the table size (the total size of entries) is
4,096 bytes and the minimum size of entries are 32 bytes.

For a high performance implementation, it is wise to use
reverse indices instead of searching the tables directly. It
is necessary to find indices from both a header names and
header name-value pairs. Logically speaking, one can make
use of a finite map of finite maps where the outer keys
are header names and the inner keys are header values. Two
lookups in 𝒪(log𝑛) are necessary for this scheme. Hash tables
can be used instead of infinite maps. If the chained hashing
whose lookup operation is 𝒪(1) average-case complexity is
used for simplicity, implementations should beware of hash-
collision where its lookup operation results in 𝒪(𝑛) worst-case
complexity.

We can reduce two lookups to one with tokens for header
names. The tokens are enumerations whose members are
organized by the header names defined in the static table. A
token holds an index to reverse index arrays described later,
and other useful information statically defined. Note that
tokens are also used for header name comparison in 𝒪(1)
in the HTTP/2 servers using our libraries. As shown below,
only one string comparison is necessary to convert a header
name to a token:

const token_t *

to_token(const char *name, size_t len) {

switch (len) {

...

case 3:

switch (name[2]) {

case ’a’:

if (memcmp(name, "vi", 2) == 0)

return TOKEN_VIA;

break;

case ’e’:

if (memcmp(name, "ag", 2) == 0)

return TOKEN_AGE;

break;

}

break;

case 4:

switch (name[3]) {

case ’e’:

if (memcmp(name, "dat", 3) == 0)

return TOKEN_DATE;

break;

case ’g’:

if (memcmp(name, "eta", 3) == 0)

return TOKEN_ETAG;

break;

...

}

...

}

return NULL;

}

With these tokens, one can implement reverse indices with
one lookup. Here is an example of the data structures:

(1) An array of finite maps for the static table. The array
is accessed with the tokens in 𝒪(1) and the finite maps
are accessed with header values in 𝒪(log𝑛). Indices
for header name-value pairs and header names can be
resolved. Note that most finite maps in this reverse
index are empty because header values are not defined
for most header names in the static table. This is an
immutable data structure.

(2) An array of mutable finite maps for the dynamic table.
The array is accessed with the tokens in 𝒪(1) and
the finite maps are accessed with header values in
𝒪(log𝑛). Indices for header name-value pairs whose
header names are defined in the static table can be
resolved.

(3) A mutable finite map for the dynamic table. The fi-
nite map is accessed with header name-value pairs in
𝒪(log𝑛). Indices for header name-value pairs whose
header names are not defined in the static table can
be resolved.

The look-up algorithm with these three reverse indices is
as follows:

∙ For a header name defined in the static table, reverse
index 2) is accessed with the corresponding token and
the corresponding infinite map is looked up with a
header value:
– If an index for the name-value pair is found, it is

returned.

– Otherwise, reverse index 1) is accessed with the to-
ken.
* If the corresponding infinite map is not empty and
an index for the name-value pair is found using
the value, return it.

* Otherwise, an index for the header name is re-
turned.

∙ For a header name not defined in the static table,
reverse index 3) is used:
– If an index for the name-value pair is found, return

it.

– Otherwise, return nothing.

Since most infinite maps in the index 1) are empty, this
algorithm uses only one lookup in most cases.

3.2 Huffman Encoding

The format of Huffman encoded strings is length-value. The
byte count of an integer varies, and the length of Huffman
encoded strings is not known in advance. So, one naive imple-
mentation encodes a string in a temporary buffer, obtains the
resulting length, encodes the length in the target buffer, and
copies the result from the temporary buffer. Another naive
implementation calculates the result length by traversing a
string in advance, then encodes the length and the string.
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The former is slow due to a string copy and the latter is slow
because of two traversals.

We found that the byte count to represent the result length
can be guessed. The following shows how many byte counts
are necessary for integer ranges:

byte count integer range

1 0 – 126
2 127 – 254
3 255 – 16510

In our experiments, Huffman encoding can compress by 20
percent on average. Thus, we can roughly guess the resulting
length using a factor of 0.8 and estimate the byte count from
the table above.

We also noticed that the length of a Huffman encoded
string is larger than that of the original string in some cases,
typically for cookie values which use ASCII symbols. In these
cases, we should use the original string instead of the Huffman
encoded string.

The following is our one traversal algorithm of Huffman
encoding, which chooses a shorter string, without using a
temporary buffer:

∙ Get the length of an input string (𝑙𝑜) and its byte count
(𝑏𝑜).

∙ Prepare a buffer whose length is 𝑙𝑜 + 𝑏𝑜.

∙ Guess the result length with the factor of 0.8 (𝑙𝑒) and
its byte count (𝑏𝑒).

∙ Huffman encode the string starting from the position
of 𝑏𝑒.
– If we reach the end of the buffer during this encoding,

encode 𝑙𝑜 in the beginning of the buffer and copy the
input string as is.

– Otherwise, obtain the real length of the result (𝑙𝑟)
and its byte count (𝑏𝑟).
* In the rare case where 𝑏𝑒 is not equal to 𝑏𝑟, move
the result appropriately within the buffer and en-
code 𝑙𝑟 in the beginning of the buffer.

* Otherwise, encode 𝑙𝑟 in the beginning of the buffer.

3.3 Huffman Decoding

Naive implementations of Huffman decoding transit the Huff-
man binary tree bit by bit. This is slow. To improve perfor-
mance, we adopted a method to calculate transition destina-
tions by 𝑛 bits basis in advance [22]. Logically, this converts
the Huffman binary tree to an 2𝑛-way tree.

As the encoded headers always have byte boundary with
padding, 2, 4 and 8 are reasonable candidates for 𝑛. If 𝑛
gets larger, the performance gets better, but more memory
is necessary. The number of tree nodes can be calculated by
256 × 2𝑛. Since 2𝑛-way trees are static data, they can be
shared for all sessions between a client or a server. Currently,
nghttp2 and H2O use 4 for 𝑛 while the HTTP/2 library in
Haskell uses 8.

4 EVALUATION

This section evaluates the techniques introduced in Section 3.
For measurement, we used a Xeon E5-2650Lv2 (1.70 GHz / 10
core / 25MB) without hyper threading x 2 with 64G memory
for hardware and CentOS 7.2. To stabilize the benchmark
results, the CPUs are set to the performance mode. The
HPACK library used is the one in Haskell with GHC(Glasgow
Haskell Compiler) [21] 7.10.3. The benchmark framework is
criterion [3]. Each encoder/decoder encodes/decodes the set
of 646 headers described above sequentially. Criterion repeats
this operation in several times and calculates a mean time
according to a statistical technique called bootstrapping.

Figure 2 shows the performance progression of HPACK
encoding for LinearH. The labels of the x-axis are as follows:
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Figure 2: The performance progression of HPACK
encoding for LinearH. The smaller, the better.

∙ Enc 1 — Linear search to convert headers to indices
with the calculation of the result length in Huffman
encoding.

∙ Enc 2 — Introducing reverse indices based on the finite
map of finite maps to Enc 1.

∙ Enc 3 — Introducing the token based reverse indices
to Enc 2

∙ Enc 4 — Introducing the length guessing for Huffman
encoding to Enc 3.

With the all techniques described in Section 3.1 and 3.2, the
final compression method is 2.10x faster than the original.

Figure 3 shows the performance of the six currently valid
encoding methods. Roughly speaking, the differences between
Naive and Static and between Static and Linear are the over-
head of reverse index 1) and reverse index 2)/3), respectively.
The performance trend of differences between Naive and
NaiveH, Static and StaticH, and Linear and LinearH is the
opposite, improving as more complex header tables are used.
This is because fewer strings need to be encoded explicitly
with Huffman encoding when the static and dynamic tables
are used.

Figure 4 shows the performance of HPACK decoding with
a 2𝑛-way Huffman tree against data encoded with LinearH.
24 and 28-way Huffman trees are respectively 2.69x and 3.92x
faster than the original binary tree.

Since Haskell is a high-level programming language with
a strong type system, it enables one to implement various
methods described here quickly without suffering from bugs.
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Figure 4: The performance progression of HPACK
decoding for LinearH with 2𝑛 way Huffman tree. The
smaller, the better.

However, the generated binaries have overhead when com-
pared with implementations in C with the same algorithms.
We took the performance of HPACK decoding of nghttp2 (𝑛
is 4) in the same benchmark environment and the same data
set with clang version 3.4.2 as C compiler. The result is 1.735
ms, which is 3.65x faster than that of Haskell.

5 CONCLUSION AND FUTURE WORK

The header compression, HPACK, is a key technology for
HTTP/2 to solve the header redundancy issue of HTTP/1.1.
We contributed by simplifying the HPACK specification, re-
moving reference set which is complicated but contributes
little to compression ratio. Also, we showed three implemen-
tation techniques to improve the performance of HPACK
encoding and decoding. HPACK encoding with our tech-
niques is 2.10x faster than the naive implementation. Also,
our 4-bits based HPACK decoding is 2.69x faster than the
original bit-by-bit implementation. We pursue further work
on performance improvement of HPACK encoding and de-
coding.
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